
Research Notebook - Joshua Markle
Table of Contents

• 3 October 2023 - Research Significance
• Keyboard Layouts

– 5 October 2023 - The Qwerty Layout
– 6 October 2023 - The Dvorak Layout
– 9 October 2023 - The Colemak Layout

• 14 October 2023 - Bash Scripting Keyboard Switch
• 15 October 2023 - Physical Keyboard Features

– 22 October 2023 - Generic Physical Keyboards
– 2 November 2023 - Split Keyboards
– 3 November 2023 - Ortholinear Keyboards
– 12 November 2023 - Curved Keyboards

• Layers
– 17 November 2023 - General Keyboard Layers
– 21 November 2023 - Symbol Layers
– 30 November 2023 - Misc Keyboard Layers

• AI Enhanced Keyboard Layouts
– 7 December 2023 - Genetic Algorithm Experimentation
– 8 December 2023 - Genetic & Evolutionary Algorithms
– 9 December 2023 - Setting Up Environment
– 11 December 2023 - Parameterizing Training Data
– 2 January 2024 - Quantifying A Keyboard
– 4 January 2024 - Finding Datasets
– 5 January 2024 - Building A Minimum Working Product
– 9 January 2024 - Professionalizing The Project
– 10 January 2024 - Adding Key Effort Into The Calculation
– 17 January 2024 - Genetic Crossover Implementation
– 31 January 2024 - Converting The Codebase to Python
– 2 Febuary 2024 - Implementing A Crossover Algorithm
– 3 Febuary 2024 - Creating A Crossover Algorithm
– 4 Febuary 2024 - Completing The Crossover Algorithm

Date Title
Time
Taken

3 October 2023 Research Significance 1h
5 October 2023 The Qwerty Layout 2h 30m
6 October 2023 The Dvorak Layout 1h
9 October 2023 The Colemak Layout 30m
14 October 2023 Bash Scripting Keyboard Switch 3h
15 October 2023 Physical Keyboard Features 1h 20m
22 October 2023 Generic Physical Keyboards 1h 30m
2 November 2023 Split Keyboards 45m
3 November 2023 Ortholinear Keyboards 30m

1

Date Title
Time
Taken

12 November
2023

Curved Keyboards 30m

17 November
2023

General Keyboard Layers 1h

21 November
2023

Symbol Layers 2h

30 November
2023

Misc Keyboard Layers 30m

7 December 2023 Genetic Algorithm Experimentation 30m
8 December 2023 Genetic & Evolutionary Algorithms 2h
9 December 2023 Setting Up Environment 2h 30m
11 December
2023

Parameterizing Training Data 1h 45m

2 January 2024 Quantifying A Keyboard 30m
4 January 2024 Finding Datasets 1h 30m
5 January 2024 Building A Minimum Working Product 3h
9 January 2024 Professionalizing The Project 6h 30m
10 January 2024 Adding Key Efforts Into The Calculation 1h
17 January 2024 Genetic Crossover Implementation 1h
31 January 2024 Coverting The Codebase to Python 4h 10m
2 Febuary 2024 Implementing A Crossover Algorithm 2h 30m
3 Febuary 2024 Completing The Crossover Algorithm 3h
Total 46h

Title: Research Significance
Date: 3 October 2023

Objective: To explore the significance of keyboard layout research in modern
computing and ergonomics.

Keyboard layouts, a fundamental aspect of our daily interaction with technology,
plays an important role in determining typing efficiency, comfort, and overall
user experience. Historically, the Qwerty layout has dominated keyboards since
its creation in the late 19th century, primarily designed to prevent typewriter
jams rather than to optimize typing speed or comfort. But it is important to
know, how do different keyboard layouts impact typing efficiency, and is there
room for improvement?

This research has direct implications on user productivity and ergonomic health.
Typing is an almost universal activity in professional and personal settings,
and even small improvements in efficiency or reductions in discomfort can have

2

substantial effects. Understanding the mechanics and ergonomics of keyboard
layouts can lead to innovations in keyboard design, potentially revolutionizing
how we interact with computers.

Recent studies have shown that alternative layouts like Dvorak, Colemak, and
Workman offer various benefits over Qwerty, such as reduced finger travel dis-
tance and more balanced usage of both hands. However, these benefits are often
hidden by the widespread familiarity and standardization of the Qwerty layout.

The significance of researching keyboard layouts lies not only in enhancing typ-
ing efficiency and ergonomics but also in adapting to evolving technologies and
user needs. Understanding the strengths and limitations of current layouts sets
the foundation for developing more advanced and user-friendly input methods
in the future. This research journey begins with dissecting the characteristics
of a keyboard, which will be the focus of our next entry.

Keyboard Layouts and Alternatives
This section is dedicated toward looking at example keyboard layouts to get a
better grasp on the type of optimizations that can be made with these layouts.

Title: The Qwerty Layout
Date: 5 October 2023

Objective: To explore the historical background of the Qwerty layout and
understand the pros and cons.

Most computers today have been standardized with the Qwerty layout. The
layout was designed in the 1870s and was invented by Christopher Latham
Sholes. It was specifically designed for typewriters but has know been adopted
onto many modern mechanical keyboards. The arrangement of keys was made
to prevent jams by seperating commonly used letter pairs, ensuring that the
typewriter’s mechanical arms wouldn’t collide and stick together during fast
typing.

As more people used Qwerty keyboards, the more necessary it became for oth-
ers to learn and use the same layout to ensure compatibility in a professional
environment. This effect is further amplified by the global nature of technology
and communication, wherein a universally recognized standard becomes more
convenient and practical.

Critics of Qwerty often point out its inefficiencies, such as increased finger travel
and potential for strain, arguing that alternative layouts could offer ergonomic
benefits and increased typing speed. However, despite these arguments, the

3

Figure 1: The qwerty keyboard layout

switch to alternative layouts has been slow, primarily due to the ingrained nature
of QWERTY in our society and the significant investment required to shift to
a new system.

Advantages of QWERTY Disadvantages of QWERTY
Widespread Familiarity:
Universally recognized and used,
making it a standard in education
and professional settings.

Inefficient Key Placement: Frequent
letters and letter combinations are not
optimally placed, leading to increased
finger movement and potential strain.

Ease of Adoption: Due to its
prevalence, most people are already
accustomed to it, reducing the
learning curve for new users.

Historical Design Limitations:
Originally designed to prevent
typewriter jams rather than for typing
efficiency or ergonomics.

Universal Compatibility:
Standard in most software and
hardware, ensuring seamless
interaction across various devices
and platforms.

Potential for Repetitive Strain: The
layout can contribute to discomfort and
repetitive strain injuries, especially in
heavy users.

High Availability: All keyboard
manufacturers produce QWERTY
keyboards, making them easily
accessible.

Suboptimal for Non-English
Languages: Not ideally suited for
languages with different character
frequencies compared to English.

Network Effect: The more
people use it, the more valuable it
becomes as a shared method of
typing, reinforcing its dominance.

Resistance to Change: The
entrenched nature of QWERTY makes
transitioning to more efficient layouts
challenging on a large scale.

4

Title: The Dvorak Layout
Date: 6 October 2023

Objective: To evaluate the Dvorak keyboard layout by outlining its pros and
cons.

The Dvorak layout, created by Dr. August Dvorak in the 1930s, was designed
with the goal of increasing efficiency and reducing finger fatigue. While it offers
several ergonomic and potential speed benefits, its adoption faces hurdles such
as the learning curve and limited recognition.

Figure 2: The dvorak keyboard layout

Advantages of Dvorak Layout Disadvantages of Dvorak Layout
Reduced Finger Movement:
Designed to minimize the distance
fingers need to travel, potentially
increasing typing speed.

Steep Learning Curve:
Transitioning from QWERTY to
Dvorak can be challenging and
time-consuming, especially for
proficient QWERTY typists.

Ergonomic Efficiency: Places the
most commonly used letters in the
home row, reducing finger fatigue
and strain.

Limited Availability: Not as readily
available as QWERTY keyboards,
which can be a hurdle in widespread
adoption.

Balanced Hand Usage: More
evenly distributes typing between
both hands, reducing the load on the
dominant hand.

Compatibility Issues: Some
software and shortcuts are optimized
for QWERTY, leading to potential
inconvenience when using Dvorak.

Potential for Speed Increase:
Users may experience an increase in
typing speed after mastering the
layout, due to its efficient design.

Initial Productivity Drop:
Learning Dvorak often results in a
temporary decrease in typing speed
and productivity.

5

Advantages of Dvorak Layout Disadvantages of Dvorak Layout
Reduced Risk of Repetitive
Strain Injury: Ergonomic design
may lower the risk of conditions like
carpal tunnel syndrome.

Lack of Recognition: Not as
universally recognized, which might
be problematic in educational and
professional environments.

Title: The Colemak Layout
Date: 9 October 2023

Objective: To analyze the Colemak keyboard layout by delineating its advan-
tages and disadvantages in a comprehensive format.

The Colemak layout, emerging as a modern alternative to QWERTY, is engi-
neered to enhance typing efficiency and ergonomics while retaining some famil-
iarity with the QWERTY arrangement. Its design aims to address the ineffi-
ciencies of QWERTY while easing the transition process.

Figure 3: The colemak keyboard layout

Advantages of Colemak Layout Disadvantages of Colemak Layout
Reduced Finger Travel: Designed to
minimize finger movement, enhancing
typing efficiency and comfort.

Learning Curve: Switching
from QWERTY to Colemak
requires retraining, which can be
challenging for many users.

Ergonomic Design: Places the most
frequently used letters on the home row,
reducing strain and the risk of repetitive
stress injuries.

Limited Hardware Support:
Not as widely supported as
QWERTY in terms of physical
keyboard availability.

6

Advantages of Colemak Layout Disadvantages of Colemak Layout
Easy Transition from QWERTY:
Shares several key placements with
QWERTY, making the learning process
somewhat easier than for other
alternative layouts.

Adaptation Time for Typing
Speed: Initial slowdown in
typing speed as users adapt to the
new layout.

Maintains Common Shortcuts:
Preserves the positioning of common
keyboard shortcuts (like Ctrl+C/V),
easing the transition for users.

Software Compatibility
Issues: Some software and
operating systems may require
additional configuration to
support Colemak.

Potential for Increased Typing
Speed: Users may experience a boost in
typing speed once they become proficient
with the layout.

Less Recognition: Not as
well-known or accepted in
professional and educational
settings compared to QWERTY.

Title: Bash Scripting Keyboard Switch
Date: 14 October 2023

Objective: Create a small bash script that I can use to switch between key-
board layouts quickly.

The core idea is to check what the current layout of the computer is and then
switch it based from there. The setxkbmap command switches the current
keyboard layout for Arch linux and the grep and awk commands are used to
quickly search for certain keywords (in this case, a keyboard layout).

In the end, this was the final bash script that is used in my Arch Linux envi-
ronment:

#!/bin/bash

Check the current keyboard variant
layout=$(setxkbmap -query | grep variant | awk '{print $2}')

Switch to the other layout
if ["$layout" != "dvorak"]; then

setxkbmap -layout us -variant dvorak
notify-send -u normal "Keyboard" "Switched layout to dvorak"

else
setxkbmap us
notify-send -u normal "Keyboard" "Switched layout to qwerty"

fi

7

Physical Keyboard Features
This section will focus on the physical aspects of a keyboard and what are the
pros and cons of these features.

Title: Generic Physical Keyboards
Date: 14 October 2023

Objective: To understand and analyze the features and functionalities of var-
ious popular generic keyboard layouts, focusing on their key distributions and
specific design characteristics.

1. Full-Size Keyboard (100%):

• Features a dedicated numeric keypad, ideal for data entry and num-
ber crunching.

• Offers more space, reducing the likelihood of hitting wrong keys dur-
ing touch typing.

• Usually comes with a wrist rest, aiding in comfort during extended
typing sessions.

2. TenKeyLess Keyboard (TKL – 80%):

• Omits the numeric keypad, making it more compact and portable.
• Popular among gamers and users who rely on shortcuts, as it allows

more space for mouse movement.
• Typically contains 104 to 108 keys, depending on the layout.

3. 1800 Layout Keyboard:

• A variation of the QWERTY layout, it incorporates a numeric pad
but clusters keys closer than a full-size keyboard.

• Integrates arrow and navigation keys into the numeric pad area, of-
fering a compact yet function-rich layout.

4. 75% Keyboard:

• Compact and includes most essential keys, making it suitable for
everyday use, gaming, and navigation.

• Often programmable, allowing for macro customization and shortcut
creation.

• Slightly more compact than tenkeyless keyboards, saving desk space.

5. 65% Compact Keyboard:

8

• Falls between full-size and 40% keyboards, typically featuring about
70 keys.

• Excludes numeric pad and function keys, focusing on the main al-
phanumeric characters.

• Compact size enhances portability and desk space utilization.

6. 60% Keyboard:

• Even more compact than 65% keyboards, removing keys such as ar-
rows for further size reduction.

• Popular among gamers and keyboard enthusiasts for its portability
and ergonomic design.

• Allows high customization, including third-party keycaps and
switches.

7. 40% Keyboards:

• The smallest functional keyboard size, omitting number rows, arrow
keys, and non-letter keys.

• Ideal for minimalistic setups and portable use, but requires adjust-
ment to frequently changing layers for numbers and symbols.

• Rare and often requires custom assembly or participation in group
buys.

Each of these keyboards have their pros and cons but ultimately, the keyboards
that have more keys only make it harder to press all of those keys. A smaller
keyboard will have keys that are always within a comfortable reach.

Title: Split Keyboards
Date: 2 November 2023

Objective: To explore the concept of split keyboards and understand their
unique features and advantages in ergonomic design.

Split keyboards are designed to cater to the natural positioning of hands and
wrists, offering a more comfortable typing experience. Unlike traditional key-
boards, they are divided into two distinct sections, which can be positioned
independently. This design allows for a more natural hand, wrist, and shoulder
position, reducing strain and discomfort during prolonged typing sessions.

Advantages of Split Keyboards Disadvantages of Split Keyboards
Ergonomic Design: Reduces strain on
wrists and hands, aligning with natural
hand positioning.

Adjustment Period: Takes
time to get accustomed to the
split layout and typing style.

9

Advantages of Split Keyboards Disadvantages of Split Keyboards
Customizable Positioning: Allows for
individual adjustment of each section for
optimal comfort.

Space Requirement: Might
require more desk space due to
the separate sections.

Reduced Risk of RSI: Potentially
lowers the risk of repetitive strain injuries
due to improved ergonomics.

Cost: Often more expensive than
traditional keyboards.

Increased Typing Efficiency: Can
lead to faster and more comfortable
typing once mastered.

Portability: Less portable
compared to one-piece keyboards.

In summary, split keyboards represent a significant advancement in ergonomic
typing. While they require an initial adjustment period and might be more
costly, the long-term benefits for comfort and health make them a valuable
choice for anyone spending extensive time typing.

Title: Ortholinear Keyboards
Date: 3 November 2023

Objective: To understand the design and utility of ortholinear keyboards and
their impact on typing.

Ortholinear keyboards are characterized by their keys being aligned in straight
rows and columns, as opposed to the staggered layout of traditional keyboards.
This alignment is said to mirror the natural motion of fingers more closely,
potentially reducing finger travel and increasing typing efficiency. The straight-
forward grid layout also aims to simplify the learning curve for touch typing
and may lead to fewer typing errors.

Advantages of Ortholinear Keyboards
Disadvantages of Ortholinear
Keyboards

Natural Finger Movement: Aligns
with the straight motion of fingers,
reducing strain.

Learning Curve: Requires
adjustment from traditional
staggered layouts.

Potentially Increased Accuracy:
Straight rows may lead to fewer
typing mistakes.

Limited Availability: Fewer
options in the market compared to
traditional keyboards.

Compact Design: Often more
compact, saving desk space.

Customization Requirement:
May need customization for optimal
use.

10

Advantages of Ortholinear Keyboards
Disadvantages of Ortholinear
Keyboards

Aesthetic Appeal: Unique and
minimalistic design.

Not Standardized: Lacks the
universal familiarity of traditional
layouts.

Ortholinear keyboards, with their distinct design and potential ergonomic bene-
fits, present an interesting alternative to conventional keyboard layouts. While
they may require a period of adjustment and are not as widely available, their
potential for a more efficient and accurate typing experience makes them an
intriguing choice for keyboard enthusiasts and professionals alike.

Title: Curved Keyboards
Date: 12 November 2023

Objective: To examine the design and benefits of curved keyboards, which are
tailored to the varying lengths of fingers and natural hand posture.

Curved keyboards are designed with ergonomics at their core, featuring keys
that are staggered both forward and backward to match the different lengths of
a user’s fingers. This design aims to provide a more natural hand positioning,
reducing the strain on fingers, wrists, and arms. By aligning the keys with the
natural reach of each finger, curved keyboards strive to create a more comfort-
able and efficient typing experience.

Advantages of Curved Keyboards
Disadvantages of Curved
Keyboards

Ergonomic Finger Alignment:
Matches the natural finger length and
movement, reducing strain.

Adaptation Period: May require
time to get used to the unique key
placement.

Reduced Typing Effort: Eases the
pressure on fingers, potentially
increasing typing speed and comfort.

Availability: Less commonly
found and often more expensive
than standard keyboards.

Potential for Increased Accuracy:
More intuitive key placement can lead
to fewer typing errors.

Size and Portability: Generally
bulkier, making them less portable
than flat keyboards.

Aesthetically Pleasing: Often have a
unique and modern design.

Compatibility: May not be
compatible with all types of
computer setups or user
preferences.

In conclusion, curved keyboards offer a novel approach to ergonomic typing,

11

focusing on reducing physical strain and enhancing typing efficiency. While
they present certain challenges in terms of adaptation and availability, their
potential benefits in comfort and health make them a compelling option for
users looking to optimize their typing experience.

Title: General Keyboard Layers
Date: 17 November 2023

Objective: To elucidate the concept of layers in keyboard design, focusing on
the general or basic layer and its functionalities.

In keyboard technology, a “layer” refers to a level of key functionality that
exists on top of the physical keys. Each layer offers a different set of functions
or characters, accessible without physically changing the keys. The general
layer is the most basic and commonly used layer, which includes the standard
keyboard layout - the alphanumeric keys, space bar, enter key, and so on.

This primary layer is often accompanied by modifier keys like ‘Shift’ and ‘Con-
trol’, which temporarily switch the keyboard to different layers when held down.
For instance, holding ‘Shift’ accesses uppercase letters and other secondary char-
acters on keys, while ‘Control’ can be used in combination with other keys for
shortcuts and special commands.

The whole essense of layers is to enhance the functionality of a keyboard without
increasing its physical size, allowing for a compact yet versatile input device.
Layers become really important as the size of the keyboard goes down. In this
experiment, the keyboard to be optimized is only 30 keys, just enough for the
alphabet. This mirrors the corne keyboard, a split, ortholinear, keyboard where
every key is only one finger movement away.

One of the goals is to optimize every layer on the keyboard, mainly the general
layers.

Title: Symbol Layers
Date: 21 November 2023

Objective: To explore the design and implementation of a symbol layer on
keyboards.

A symbol layer on a keyboard is a dedicated layer that transforms the primary
keys into symbols. This feature is especially valuable for software developers and
those using smaller keyboards, as it allows for easy access to frequently used non-
alphabetic characters like brackets, mathematical symbols, and punctuation.
Typically, this layer is accessed by holding down a modifier key, such as AltGr

12

(Right Alt), enabling the user to type symbols from more accessible keys, like
the home row.

Designing an effective symbol layer involves considering the frequency and ease
of access to various symbols. For instance, on standard keyboards, many sym-
bols are located in the top-right corner, making them hard to type efficiently.
By reassigning these symbols to keys within closer reach, typing speed and com-
fort can be significantly improved. The design can be customized to include
digits, accented characters, or other specialist symbols, depending on the user’s
specific needs.

In the context of smaller keyboards, where space is limited, a symbol layer
becomes even more crucial. It follows the ‘1u principle,’ ensuring that commonly
typed keys are no more than one key-unit distance from the home position.
This approach is not only necessary for 40% boards but also beneficial for larger
keyboards.

When designing a symbol layer, it’s essential to prioritize the layout for more
frequent symbols based on the user’s specific programming languages or typing
requirements. For example, a layout optimized for C++ and Python might
group keys related to comparisons, arithmetic, and bitwise operators. Similarly,
considerations for easy inward and outward rolls can enhance typing efficiency
for common bigrams and symbol combinations.

There are various existing designs and resources available for reference, such
as Seniply, Miryoku, and others, which provide insights into effective symbol
layer layouts. These examples can serve as inspiration or a starting point for
customizing your own symbol layer, tailored to your specific typing habits and
requirements.

Title: Misc Keyboard Layers
Date: 30 November 2023

Objective: To understand the purpose and functionality of miscellaneous key-
board layers, such as function layers, and their role in enhancing keyboard
utility.

Miscellaneous keyboard layers, including a function layer or a layer with addi-
tional controls, are designed to extend the functionality of a keyboard beyond
its standard capabilities. These layers typically include keys for media control
(play, pause, volume), Bluetooth connectivity, arrow keys for navigation, and
other specialized functions. These layers are particularly beneficial in compact
keyboards, where space is at a premium, but are also useful in standard key-
boards for streamlining workflows and enhancing convenience.

The function layer, for instance, might include keys for F1 to F12 functions,
often used in software applications and operating systems for quick access to

13

specific features. Media control keys allow users to manage their audio and
video playback without leaving the keyboard, offering a seamless multitasking
experience. Similarly, Bluetooth control keys can enable quick switching be-
tween connected devices, enhancing the keyboard’s versatility in multi-device
setups.

AI Enhanced Keyboard Layouts

Title: Genetic Algorithm Experimentation
Date: 7 December 2023

Objective: To explore the current state of AI-enhanced keyboard layouts and
outline an experimental approach for creating an optimal keyboard layout using
a genetic algorithm.

Recent advancements in keyboard layout design have been significantly influ-
enced by AI technologies. One notable example is the Halmak keyboard layout,
an AI-designed layout constructed within the keyboard-genetics project. This
layout was developed based on real-world hand movements analysis, aiming
for maximal typing efficiency and minimal finger movement distances. The
Halmak layout, in efficiency comparisons, has shown significant improvements
over traditional layouts like QWERTY, Dvorak, and Colemak (GitHub -
kaievns/halmak)[https://github.com/kaievns/halmak].

In designing an experiment to create an optimal keyboard layout using a genetic
algorithm, several steps are crucial. The process begins with the selection of a
set of commonly used words. For example, the Longman Communication 3000
list, which includes the most frequent words in English, can serve as a basis.
The frequency of each letter and their pair combinations are then analyzed us-
ing tools like Text Analyzer. This analysis forms the foundation for the genetic
algorithm, which aims to minimize finger travel on the virtual keyboard by opti-
mizing key placements based on frequency and ergonomic considerations (PLOS
ONE - Application of a genetic algorithm to the keyboard layout problem).

The genetic algorithm iteratively adjusts the layout, evaluating each iteration
based on specific parameters like finger movement distance, common bigrams or
trigrams, and ergonomic factors. The objective is to find a layout that minimizes
finger movement and maximizes typing efficiency.

For my research, the focus will be on designing both a general layer and symbol
layer that is particularly useful for typing normal english but also typing code.
This involves considering the frequency of symbol usage in programming lan-
guages and placing these symbols in easily accessible positions on the keyboard.

14

Genetic & Evolutionary Algorithms
Date: 8 December 2023

Objective: Research and gain a better understanding of modern literature
on genetic algorithms for the purpose of optimizing a keyboard layout using
machine learning.

Machine learning is a good way to get an optimized result using statistics and
math. Genetic and evolutionary algorithms are a subset of this that simulation
an environment with natural selection where only the best get to reproduce. In
the case of this research, only the best keyboard that is tested to be the best
gets to reproduce and mutate into a better keyboard.

Implementing this involves two approaches:

1. Mutations: Mutating a keyboard is easy. Take the best keyboard and
then make random switches between the keys a certain number of times
and then test the new keyboard to see if it is better. This is simple but
it doesn’t work really well. It relies heavily on luck to get to the best
keyboard and follows more of a logarithmic progression on advancement.

2. Crossover: This approach is about taking the best keyboard layouts and
then merging them to make a (hopefully) better keyboard. This is proba-
bly the best approach but it not easy to implement. There will have to be
more research on this topic in the future before an actual implementation
can take place.

Setting Up Environment
Date: 9 December 2023

Objective: Map out and start work on creating an evironment for development
on the code that generates the optimized keyboard layouts based on a genetic
algorithm.

For this project, C++ is going to be the prefered language because of how
fast it is. This language is known as the benchmark to test how slow other
languages are so in this case, it will handle the large amonut of data processing
that will take place. The specefic programming environment is Neovim, a highly
customizable text editor that is lightweight but powerful.

The folder structure will resemble something like this:

.
��� README.md
��� research.md

15

��� research.pdf
��� src

��� Makefile
��� main.cpp
��� analysis.cpp
��� utils.cpp
��� data

��� quotes.json
��� cpp.json
��� python.json

Features:

• Here, there is a folder that will contain all of the source code src.
• In here, there is a Makefile that will be able to actually build the ap-

plication. Essentially, a Makefile is a file that runs a bunch of bash
programming to build the executable file that will run the genetic algo-
rithm.

• The main.cpp, analysis.cpp, and utils.cpp files are all source code
files with their own uses.

• The data directory holds the training data that is used to actually train
these keyboard layouts. Each different set of data will result is different
keyboard layouts. For example, a layout optimized for normal English will
be different than a layout optimized for C++ programming.

Parameterizing Training Data
Date: 11 December 2023

Objective: Formulate a way to quantify how good a keyboard layout is.

Features To Track:

1. The most important factor to a good keyboard is the finger distance trav-
eled. A keyboard that makes you move your fingers all around the key-
board when typing is objectively worse than one that allows you to type
mostly on the home row.

2. The amonut of effort it takes to hit the key. The index fingers and middle
fingers are both much stronger than the pinky fingers. Therefore, more
important letters sholud tend to hover around stronger fingers. There are
also middle keys that are really incovienint and two middle keys that are
a pain to reach.

3. Bigrams and trigrams are also important. Not so much as the speed of
typing but the overall typing experience. It feels much better to type
inwards from the pink to the ring to the middle to the index finger and
akward when typing outwardly. Common bigrams such as “th” and “ch”

16

and trigrams such as “the” and “cha” should typically follow this pattern
of inward typing.

Taking these aspects into account, an array can be constructed that represents
the importance and effort for each key on the keyboard.

C++ Implementation:

const int KEY_COUNT = 30;
const int keyDistances[KEY_COUNT] = {

11, 11, 11, 11, 13, 17, 11, 11, 11, 11, // Upper row
0, 0, 0, 0, 10, 10, 0, 0, 0, 0, // Home row
12, 12, 12, 12, 19, 12, 12, 12, 12, 12 // Lower row

};
const int keyEfforts[KEY_COUNT] = {

6, 2, 1, 6, 11, 14, 9, 1, 1, 7, // Upper row
1, 0, 0, 0, 7, 7, 0, 0, 0, 1, // Home row
7, 8, 10, 6, 10, 4, 2, 5, 5, 3 // Lower row

};

In this senario, the keyboard has a total of 30 keys, 10 keys for each row. These
are good approximate values for the distances the finger needs to travel and the
effort that it would take to type that key.

Example Layout:

std::vector<char> qwertyLayout = {
'q', 'w', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p',
'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', ';',
'z', 'x', 'c', 'v', 'b', 'n', 'm', ',', '.', '?'

};

Quantifying A Keyboard
Date: 2 January 2023

Objective: Construct an equation that will be used to test how good a key-
board is by using the parameterization techniques.

In order to start the machine learning process, there needs to be a good way to
test how good a keyboard is. The simplest way to do this is to take a letter from
the dataset and find the finger distance needed to press it and then go to the
next letter and on and on. This way, after going through all of the training data,
all of the letters have been testing and the total distance traveled is tracked.

17

Finding Datasets
Date: 4 January 2023

Objective: Find a good dataset that can be used to train the machine learning
algorithm.

The dataset for this project is going to be a dataset from huggingface, a online
platform that has resources for training AI models. Credit goes to Abirate
for making the dataset and sharing it publicly with free use. The dataset is
composed of thousands of english quotes that is perfect for this machine learning
project.

Abirate/english_quotes

In the C++ code, a simple integration of finding an english quote would look
something like this:

// Find a random quote in the JSONL file
string getRandomQuote() {

string filename = "data/quotes.jsonl";
ifstream file(filename);
if (!file.is_open()) {

cerr << "Error: Unable to open file '" << filename << "'" << endl;
return "";

}

vector<string> quotes;
string line;
while (getline(file, line)) {

quotes.push_back(line);
}

// Seed the random number generator
srand(static_cast<unsigned>(time(nullptr)));

// Pick a random quote
int randomIndex = rand() % quotes.size();
string randomQuote = quotes[randomIndex];

// Extract the "quote" part from the JSON object
size_t quoteStart = randomQuote.find("\"quote\":\"");
if (quoteStart != string::npos) {

quoteStart += 9; // Move to the start of the actual quote
size_t quoteEnd = randomQuote.find("\"", quoteStart);
if (quoteEnd != string::npos) {

string quoteText = randomQuote.substr(quoteStart, quoteEnd - quoteStart);
return quoteText;

18

https://huggingface.co/datasets/Abirate/english_quotes

}
}

return "";
}

Here, we grab a random quote from our dataset, clean it up with regex and
then return it. This function can be used to create a large and random body
of text that semi-accurately represents the english language. In the future, this
function could be improved if it took in any text file. This would make it easier
to train based on small little dataset and find the perfect keyboard for that task.
For example, a text file with someone’s english paper could train the AI to make
the best keyboard layout for typing that particiular essay.

Building A Minimum Working Product
Date: 5 January 2023

Objective: Create a minimum working product for the algorithm and make it
slowly optimize generations of keyboard layouts.

For this minimum working product, the features will be limited for the goal of
making sure that they work in practice.

Features:

• Generations: each generation of keyboards are made up of the best key-
board layout in the past but mutated randomly.

• Mutations: Keyboard layouts in each generations have mutations in the
hope that they randomly become a better keyboard layout.

• Data: A random set of english quotes are stringed together to make the
training data for that keyboard.

• Logging: A short summary of the results are output every couple of gen-
erations to track the optimization progression.

Constants:

Some helpful constants for the generational runs. These can be optimized too
but through trail and error.

const int KEY_COUNT = 30;
const int NUM_KEYBOARDS = 12;
const int MAX_MUTATIONS = 100;
const int NUM_GENERATIONS = 1000;
const int NUM_GEN_QUOTES = 100;

Genetic Algorithm Code:

19

// Genetic algorithm function
void optimizeKeyboardLayout() {

srand(static_cast<unsigned>(time(nullptr)));

vector<vector<char>> keyboards(NUM_KEYBOARDS, qwertyLayout);
int bestDistance = std::numeric_limits<int>::max();
vector<char> bestKeyboard = qwertyLayout;

// Generate a quote for this generation
string genQuotes = "";
for (int q = 0; q < NUM_GEN_QUOTES; ++q) {

genQuotes += getRandomQuote();
}

for (int generation = 1; generation <= NUM_GENERATIONS; ++generation) {
// Generate keyboards for this generation
for (int i = 0; i < NUM_KEYBOARDS; ++i) {

if (i > 0) {
keyboards[i] = bestKeyboard; // Make a copy of the best keyboard
mutateLayout(keyboards[i]); // Mutate the copied layout

}

// Calculate distance for the current keyboard layout
int distance = calculateDistance(keyboards[i], genQuotes);

// Update the best keyboard if the distance is smaller
if (distance < bestDistance) {

bestDistance = distance;
bestKeyboard = keyboards[i];

}
}

// Output the best keyboard from every generation
if (generation % 10 == true) {

cout << "Generation " << generation << ", Best Keyboard (" << bestDistance << "): ";
for (char key : bestKeyboard) {

cout << key;
}
cout << endl;

}
}

}

Keyboard layouts evolve through mutations. These mutations are simple and
are a basic swap of two random keys on the keyboard a certain number of times.

20

Mutation Code:

// Mutate the keyboard layout (1 to MAX_MUTATIONS)
void mutateLayout(vector<char>& layout) {

int numMutations = rand() % MAX_MUTATIONS + 1;
for (int i = 0; i < numMutations; ++i) {

// Randomly select two distinct keys to swap
int index1 = rand() % layout.size();
int index2 = rand() % layout.size();

// Ensure distinct keys for swapping
while (index1 == index2) {

index2 = rand() % layout.size();
}

// Swap the keys at index1 and index2
swap(layout[index1], layout[index2]);

}
}

Professionalizing The Project
9 January 2023

Objective: Organize the project files in order to prepare for large scale changes.

Currently, the project is in contained on one file (the main.cpp). This will only
get harder to work with as the project gets bigger and there are more and more
paremeters to keep track of.

The first method used to rearrange the codebase is to split up the main.cpp file.
This will make everything modular and easier to test later on as the project gets
bigger. The problem with having a really large main.cpp file is that changing
one small thing about the code will take expontially longer to compile. By
spliting up the code into many smaller scripts, it is much faster to compile and
even makes the project easier to understand.

Updated File Stucture:

.
��� README.md
��� Makefile
��� research.md
��� research.pdf
��� bin
� ��� ...
��� data

21

� ��� quotes.txt
� ��� ...
��� obj
� ��� ...
��� src

��� ...

The Makefile is how this project will now be complied. It is essentiall a small
script that will run a bunch of bash code in order to correctly compile the large
amonut of source files in the project. The Makefile outputs an executable file
into the bin directory that can then be executed to actually perform the genetic
algorithm. It also is used to create obj files that make faster compile times.

Inside the obj directory, there are temporary files that are used for quicker
compile times. This way, when I make a small change to the codebase, then I
only have to update one .o file in order for complilation.

��� obj
��� algorithm
� ��� geneticAlgorithm.o
��� main.o
��� struct
� ��� keyboardLayout.o
��� utils

Final Makefile

Compiler settings
CC = g++
CFLAGS = -I./algorithm -I./struct -I./utils -I./data

Define the directories for the build components
SRCDIR = src
OBJDIR = obj
BINDIR = bin

Define your source files here
SOURCES := $(wildcard $(SRCDIR)/*.cpp) \

$(wildcard $(SRCDIR)/algorithm/*.cpp) \
$(wildcard $(SRCDIR)/struct/*.cpp) \
$(wildcard $(SRCDIR)/utils/*.cpp)

Define your object files here
OBJECTS := $(SOURCES:$(SRCDIR)/%.cpp=$(OBJDIR)/%.o)

Define your executable file name here
EXECUTABLE := $(BINDIR)/main

22

all: $(BINDIR) $(OBJDIR) $(EXECUTABLE)
@$(EXECUTABLE)

$(BINDIR):
mkdir -p $@

$(OBJDIR):
mkdir -p $@
mkdir -p $@/algorithm
mkdir -p $@/struct
mkdir -p $@/utils

$(EXECUTABLE): $(OBJECTS)
$(CC) $(CFLAGS) -o $@ $(OBJECTS)

$(OBJDIR)/%.o: $(SRCDIR)/%.cpp
$(CC) $(CFLAGS) -c $< -o $@

clean:
rm -rf $(OBJDIR) $(EXECUTABLE)

Significant changes have also been made to the source code (src) directory.
The main.cpp file has been split up into 6 different source code files. Each one
specializes with their own part of the genetic algorithm.

.
��� src

��� algorithm
� ��� geneticAlgorithm.cpp
� ��� geneticAlgorithm.h
��� data
� ��� createJson.cpp
��� main.cpp
��� struct

��� keyboardLayout.cpp
��� keyboardLayout.h

Improvements to the data processing have also speed of the data processing.
A new approach to processing the data is used. A small script is used to run
through around 2k english quotes and output statistics.

New English Character Statistics

18.235023
e 9.829422
t 7.313724
o 6.900338
...

23

/ 0.000562
_ 0.000281
~ 0.00028

Note: The most common character is the space, which makes sense

These percentages are then used to calculate the total distance traveled with a
new formula.

// Calculate total distance
int totalDistance = 0;
for (char key : layout) {

int keyIndex = find(layout.begin(), layout.end(), key) - layout.begin();
if (keyIndex < layout.size()) { // Check if the key is found

double keyDistance = keyDistances[keyIndex];
totalDistance += keyDistance * frequencies[key]; // Distance of the key location * the frequency of that key

}
}

This new way of calculating the distance traveled is much faster than constantly
looping through thousands of quote words. This is the process:

1. Loop through the keys in the keyboard layout
2. For each key, calculate the distance: key_frequency * key_position_distance
3. Add to the running sum of totalDistance

Title: Adding Key Effort Into The Calculation
Date: 10 January 2023

Objective: Take into account the amount of effort it takes to hit keys as part
of the keyboard evaluation.

Adding in the efforts is easy, just like the key distances, use the keyIndex to
find the key location in the array of key efforts and then grab the effort it would
take to hit the key and multiply that by the frequency of that key. This way,
the effort to hit every key is added up, like the distances, and can be used to
evaluate the objective worth of the keyboard layout.

// Calculate total distance & effort
int totalDistance = 0;
int totalEffort = 0;
for (char key : layout) {

int keyIndex = find(layout.begin(), layout.end(), key) - layout.begin();
if (keyIndex < layout.size()) { // Check if the key is found

totalDistance += keyDistances[keyIndex] * frequencies[key]; // Distance of the key location * the frequency of that key
totalEffort += keyEfforts[keyIndex] * frequencies[key]; // Effort needed for the key location * the frequency of that key

24

}
}

After keeping the running sum of the effort, there are now two things to take
into account when evaluating a keyboard layout. The results of both the
totalDistance and totalEffort are two arbitrary constants that have no re-
lation. To evaluate the keyboard layout, a relationship must be formed. Both
variables can be added together to form an overall value representing the worth
of the keyboard layout. The hard part about forming the relationship between
totalDistance and totalEffort is that it requires a guess and check approach.
Each variable needs a weight assigned to it to know how much to contribute to
the overall keyboard value.

Final Equation

// Evaluation weights
const int WEIGHT_TOTAL_DISTANCE = 2;
const int WEIGHT_TOTAL_EFFORT = 1;

// Find keyboard layout objective worth
int keyboardValue(int& totalDistance, int& totalEffort) {

return WEIGHT_TOTAL_DISTANCE * totalDistance + WEIGHT_TOTAL_EFFORT * totalEffort;
}

Here, the totalDistance of the keyboard is weighted twice is much as the
totalEffort. These values are temporary and are subject to change based on
the final outputs and the desired output keyboard layout. Should the keyboard
have minimal finger movement or overall easy to type?

Title: Genetic Crossover Implementation
Date: 17 January 2023

Objective: Create and implement an efficient algorithm to merge qualities of
successful keyboards.

Crossover is a key part of the evolutionary process. Essentially, it is the com-
bination of traits between members in a population. For the case of keyboard
optimization, this looks like taking two keyboards and copying key locations
from both locations and then placing them on a new keyboard. This new key-
board then fills in the remaining key locations.

After crossover, the keyboard will then undergo a mutation (switching two ran-
dom keys) making for a fairly accurate representation of genetic evolution.

For the crossover algorithm, a simple algorithm from “A Deep Genetic Method
for Keyboard Layout Optimization” will be used:

25

First, two parent keyboard layouts are selected. These parents are chosen based
on their fitness, which in this context means how efficient or ergonomic they are
for typing. The cycle crossover starts by selecting a random key position from
one parent layout and copies its corresponding key to the child layout. It then
looks at where this key is positioned in the other parent layout and copies the
key found in that position back to the first parent to see where it should go
in the child layout. This process is repeated, forming a cycle of key positions,
until it returns to the original key position. If there are still keys left to be
assigned in the child layout after the first cycle is complete, the algorithm starts
a new cycle. This time it might start with the other parent as the source. The
process continues, creating cycles, until all keys have been assigned positions in
the child layout.

Final Algorithm

std::vector<char> crossover(const std::vector<char>& parent1,
const std::vector<char>& parent2) {

std::vector<char> child(parent1.size(), '\0');
std::unordered_set<char> placedKeys;

int cycleCount = 0;
while (cycleCount < MAX_CROSSOVERS && placedKeys.size() < parent1.size()) {

// Find the starting point for the cycle which is not yet in the child
auto it = std::find_if(parent1.begin(), parent1.end(),

[&placedKeys](char key) { return placedKeys.find(key) == placedKeys.end(); });
if (it == parent1.end()) {

break; // All keys have been placed
}

char startKey = *it;
char currentKey = startKey;
do {

// Place the current key from parent1 into the child
int indexInParent1 = std::find(parent1.begin(), parent1.end(), currentKey) - parent1.begin();
child[indexInParent1] = currentKey;
placedKeys.insert(currentKey);

// Find the next key to place, which is the key at the position of currentKey in parent2
int indexInParent2 = std::find(parent2.begin(), parent2.end(), currentKey) - parent2.begin();
currentKey = parent1[indexInParent2];

} while (currentKey != startKey);

++cycleCount;
}

// Fill remaining positions with keys from the other parent
for (size_t i = 0; i < child.size(); ++i) {

26

if (child[i] == '\0') {
child[i] = parent2[i];

}
}

return child;
}

Title: Converting The Codebase to Python
Date: 31 January 2024

Objective: Rewrite all of this project’s code into python

This is a large pivot in development and will shape the future of this project
significantly. Writing C++ requires a certain level of attention to detail and
large amount of things to keep track of all at once. For this reason, teh codebase
is exponentially growing larger and getting really difficult to maintain or even
make progress. This is why everything should be converted into a simipler
language such as Python. Python doesn’t require alot of attention to detail and
instead, it is easier to focus on actually development. Of course, this will hurt the
actual results produced as Python is not the fastest language, especially when
compared with C++, the fastest language besides pure machine code. Overall,
the conversion to Python will make it easier to proritize adding features and
facilitate a faster development.

The new file structure looks like this:

.
��� data
� ��� quotes.txt
��� docs
� ��� ...
��� Makefile
��� README.md
��� research.md
��� research.pdf
��� src

��� __pycache__
� ��� ...
��� config.py
��� genetic_algorithm.py
��� keyboard_layout.py
��� main.py

Everything is basically the same except for the fact that all of the .cpp files
are now .py files. Everything works basically the same except for performance.

27

The actual results aren’t as fast or even as good as the C++ implementation
but the code is much easier to understand. The entire codebase has been cut
down by 80% as Python is such a straightforward language.

Actually running the code is much different. Before, the Makefile that was
made in order to run all of the .cpp, .h, and .obj files is now one line: run:
python src/main.py. Before it was a large mess of tracking the header files
and then compiling to object files and then using those new object files in order
to optimize faster compile times. Now, I have a simple __pycache__ directory
that is automatically created by Python that does everything that had to be
done manually in C++.

main.py

import config
from genetic_algorithm import optimize_keyboard_layout

if __name__ == "__main__":
config.load_frequencies("../data/quotes.txt")
optimize_keyboard_layout()

genetic_algorithm.py

import random
import config
from keyboard_layout import calculate_value, crossover, mutate_layout

def optimize_keyboard_layout():
random.seed()

keyboards = [config.qwerty_layout[:] for _ in range(config.NUM_KEYBOARDS)]
best_value = float("inf")
best_keyboard = keyboards[0][:]

print(
f"Generation 0: Best Keyboard ({calculate_value(config.qwerty_layout)}): {''.join(config.qwerty_layout)}"

)

for generation in range(1, config.NUM_GENERATIONS + 1):
for i in range(config.NUM_KEYBOARDS):

if i > 0:
parent_index = random.randint(0, config.NUM_KEYBOARDS - 1)
keyboards[i] = crossover(best_keyboard, keyboards[parent_index])
keyboards[i] = mutate_layout(keyboards[i])

value = calculate_value(keyboards[i])

28

if value < best_value:
best_value = value
best_keyboard = keyboards[i][:]

print(
f"Generation {generation}, Best Keyboard ({best_value}): {''.join(best_keyboard)}"

)

print("\nFinal Best Keyboard Layout:")
for i, key in enumerate(best_keyboard, 1):

print(key, end=" ")
if i % 10 == 0:

print()
print()

if __name__ == "__main__":
config.load_frequencies("data/quotes.txt")
optimize_keyboard_layout()

keyboard_layout.py

import random
import config

def calculate_value(layout):
total_distance = sum(

config.key_distances[i] * config.frequencies.get(layout[i], 0)
for i in range(config.KEY_COUNT)

)
total_effort = sum(

config.key_efforts[i] * config.frequencies.get(layout[i], 0)
for i in range(config.KEY_COUNT)

)
return total_distance + total_effort

def mutate_layout(layout):
for _ in range(random.randint(1, config.MAX_MUTATIONS)):

index1, index2 = random.sample(range(len(layout)), 2)
layout[index1], layout[index2] = layout[index2], layout[index1]

return layout

def crossover(parent1, parent2):
child = parent1[: len(parent1) // 2] # Start with the first half of parent1
for key in parent2: # Fill in the rest with keys from parent2 that aren't already in the child

if key not in child:
child.append(key)

29

return child

config.py

Constants
KEY_COUNT = 30
MAX_MUTATIONS = 100
NUM_KEYBOARDS = 100
NUM_GENERATIONS = 100

Code abstracted for simplicity
key_distances = [

...
]
key_efforts = [

...
]

Default layouts
qwerty_layout = list("qwertyuiopasdfghjkl;zxcvbnm,./")
dvorak_layout = list("',.pyfgcrlaoeuidhtns;qjkxbmwvz")

frequencies = None

def load_frequencies(file_path):
global frequencies
frequencies = {}
with open(file_path, "r") as file:

for line in file:
parts = line.strip().split(" ")
char = (

" " if parts[0] == "" else parts[0]
) # Handle space as the first character
freq = float(parts[-1]) # Frequency is the last part
frequencies[char] = freq

Title: Implementing A Crossover Algorithm
Date: 2 Febuary 2024

Objective: Implement the crossover algorithm found in the research of Keren
Nivasch and Amos Azaria (2021)

In order for the genetic algorithm to work the best, it is important to have a
good way of merging good genetics. The goal is to merge the positive quali-
ties of two good keyboards to make an even better keyboard. Having a good

30

crossover algorithm will greatly decrease the amount of computation power and
time because the only other alternative is guess and check through mutations.
Crossover is like an educated guess of an even better keyboard.

The main research paper that I am following has a cyclic algorithm that performs
crossover:

1. Given two keyboards, randomly select a starting key (k1) from keyboard
1 (K1)

2. Look at the starting key’s position and then map it onto keyboard 2 (K2)
to find a new key (k2)

3. Place k1 onto the new child keyboard
4. Find k2’s letter position on K1 and then start from that key
5. Restart at step 2
6. If the new starting key has already been placed on the child keyboard,

randomly select a new key from the unfilled slots on the child keyboard
7. Repeat the cycles until the child keyboard is filled

The final implementation

Merge two keyboard layouts using a cyclic algorithm
def crossover(parent1, parent2):

Initialize the child layout
child = [None] * len(parent1)

def perform_cycle(start_index, source_parent, target_parent):
print("cycle")
current_index = start_index
cycle_length = 0
while cycle_length < config.MAX_CROSSOVER_CYCLES:

Copy the key from the source parent to the child
if child[current_index] is None:

child[current_index] = source_parent[current_index]

Find the next key in the target parent that matches the current key in the source parent
next_key = source_parent[current_index]
next_index = target_parent.index(next_key)

cycle_length += 1

If the cycle is complete or the next key position is already filled, break
if next_index == start_index or child[next_index] is not None:

break
else:

current_index = next_index

unfilled_indices = set(range(len(parent1))) # Use a set for faster removals
while unfilled_indices:

31

Select a random start index from the unfilled positions
start_index = random.choice(list(unfilled_indices))

Alternately choose parents to start from for each new cycle
if len(unfilled_indices) % 2 == 0:

perform_cycle(start_index, parent1, parent2)
else:

perform_cycle(start_index, parent2, parent1)

Remove the filled positions from the set of unfilled indices
unfilled_indices = {i for i in unfilled_indices if child[i] is None}

return child

In order to know if this algorithm actually works, a small testing program
was created that output the two parent keyboards and then the resulting child
keyboard:

from keyboard import crossover

NEW_LAYOUTS = 1

Define color codes
BLUE = '\033[94m'
RED = '\033[91m'
YELLOW = '\033[93m'
ENDC = '\033[0m' # End color

Reference layouts
qwerty_layout = "qwertyuiopasdfghjkl;zxcvbnm,.'"
dvorak_layout = "',.pyfgcrlaoeuidhtns;qjkxbmwvz"

Print qwerty and dvorak layouts with colors
print("QWERTY Layout: DVORAK Layout:")
for i in range(3):

for k in range(10):
print(BLUE + qwerty_layout[i * 10 + k] + ENDC, end=" ")

print(" ", end="") # Space between layouts
for k in range(10):

print(RED + dvorak_layout[i * 10 + k] + ENDC, end=" ")
print()

Generate and print NEW_LAYOUTS new layouts with colors
new_layout = crossover(qwerty_layout, dvorak_layout) # Generate new layout
for layout_number in range(NEW_LAYOUTS):

print(f"\nNew Layout {layout_number + 1}:")
for i, key in enumerate(new_layout, start=1):

32

if key == qwerty_layout[i-1] and key == dvorak_layout[i-1]:
print(YELLOW + key + ENDC, end=" ")

elif key == qwerty_layout[i - 1]:
print(BLUE + key + ENDC, end=" ")

elif key == dvorak_layout[i - 1]:
print(RED + key + ENDC, end=" ")

else:
print(key, end=" ") # White by default

if i % 10 == 0:
print() # Newline every 10 characters

Test duplication
for i in range(NEW_LAYOUTS):

print("", "".join(sorted(set(new_layout))), "".join(sorted(new_layout)), sep="\n")

Ultimately, this did not work. The final child keyboard just became keyboard 1,
taking nothing from keyboard 2. And when it did take something from keyboard
2, there would be duplicate key placements and then the child keyboard was
ruined. A new algorithm will have to be used in the future.

Title: Creating A Crossover Algorithm
Date: 3 Febuary 2024

Objective: Design a new algorithm that actually works without worrying about
performance.

Last entry (Feb 2), the implementation of an existing algorithm did not work.
It seems like the core algorithm is flawed and it is unclear how the previous
researchers got it to work. For now, the goal is to get something working. It
is better to have a badly designed working product than a perfectly designed
unfinished product. Optimization can be the focus for later, now, it is important
to get something working.

The current idea is to map out all possibilities for each key. This is about 30
yes/no choices that need to be made, either take from parent keyboard 1 or
parent keyboard 2. The algorithm will work like the physics concept of a wave
function collapse where one decision or outcome will collape the outcomes of
the other choices.

The algorthim is like a suduko puzzle that starts with no numbers. First it
stores all possible solutions, randomly chose one key from parent 1 to put onto
the child keyboard. From there, get the position of the other possible key in
that location from parent 2. Because that key only occurs twice within all of
the possibilities, the other possibility location is found and then the process is
repeated. This way, a new keyboard is created that is a perfect mix between
the two parent keyboards.

33

Intermediate implementation:

def crossover(parent1, parent2):
child = [None] * len(parent1)
possibilities = [[parent1[i], parent2[i]] for i in range(len(parent1))]
positions = list(range(len(parent1)))

while positions:
Choose a random unfilled position
possibility_index = random.choice(positions)

Ensure we are not choosing from an empty list
if not possibilities[possibility_index]:

positions.remove(possibility_index)
continue

If only one possibility left, use it; otherwise, choose randomly
if len(possibilities[possibility_index]) == 1:

chosen_key = possibilities[possibility_index][0]
else:

chosen_key = random.choice(possibilities[possibility_index])

Place chosen key in child layout
child[possibility_index] = chosen_key
positions.remove(possibility_index) # Remove this position from further consideration

Remove chosen key from all other possibilities to avoid duplicates
for pos in possibilities:

if chosen_key in pos:
pos.remove(chosen_key)

If a possibility list becomes empty, fix the remaining character in the child layout
for i, pos in enumerate(possibilities):

if len(pos) == 1 and child[i] is None:
child[i] = pos[0]
if i in positions:

positions.remove(i)

return ''.join(child)

After updating the testing program, it is clear that this algorthim is good. It is
really close to working. There are a few duplicate keys that occur that need to
be filtered out.

Sample Output

QWERTY Layout: DVORAK Layout:
q w e r t y u i o p ' , . p y f g c r l

34

a s d f g h j k l ; a o e u i d h t n s
z x c v b n m , . ' ; q j k x b m w v z

New Layout
q w e r y f g c o l
a o d u i d h k n ;
z x c v x b m , v '

The c, d, o, v, and x keys are repeated twice. It is not clear why yet but that
is a future problem.

Title: Completing The Crossover Algorithm
Date: 4 Febuary 2024

Objective: Complete the crossover algorithm and fix the duplication errors

As a continuation of the previous entry, this session was focused on fixing the
crossover algorithm and the small bugs.

It turns out that this method is good at only finding semi good solutions, not
perfect solutions. By adding another check to the generation process of the child
if that key has already been placed, the final keyboard produced will meet the
requirements on inhereting from only both parent keyboards but there will be
a few blank spaces. The amount of unfillable spaces is realatively small so most
of the keyboard will always be filled.

The new crossover algorithm treats these unfillable spaces as mutations in the
keyboard. It first creates a list of of the keys that are left avaliable. It then
iterates through the keys on the child keyboard and if there is a blank space, it
will place on of the unplaced keys. This newly placed key will not correspond
with either of the parents but is like a random mutation between the merging
of the two parent keyboards. Eventually all of the unfilled spaces will be filled
randomly and the child keyboard can be returned.

Final function:

def crossover(parent1, parent2):
child = [None] * len(parent1)
possibilities = [[parent1[i], parent2[i]] for i in range(len(parent1))]
positions = set(range(len(parent1)))
used = set()

while positions:
possibility_index = random.choice(list(positions))
positions.remove(possibility_index)

Filter possibilities to remove already used characters

35

possibilities[possibility_index] = [p for p in possibilities[possibility_index] if p not in used]

If no possibilities left, continue to next iteration
if not possibilities[possibility_index]:

continue

If only one possibility left, use it; otherwise, choose randomly
if len(possibilities[possibility_index]) == 1:

chosen_key = possibilities[possibility_index][0]
else:

chosen_key = random.choice(possibilities[possibility_index])

Place chosen key in child layout and mark as used
child[possibility_index] = chosen_key
used.add(chosen_key)

Create a list of unused characters
all_chars = set(parent1 + parent2)
unused_chars = list(all_chars - used)

Shuffle the list of unused characters to introduce randomness
random.shuffle(unused_chars)

Fill in any None values in child with unused characters
for i, char in enumerate(child):

if char is None:
Pop an unused character from the list and place it in the child
child[i] = unused_chars.pop()

Ensure all unused characters are used
if unused_chars:

raise ValueError("Not all characters were used, which indicates a logic error.")

return ''.join(child)

Overall, this new algorithm works and even has an unintentially created extra
feature for mutatations. This will work for the present moment research but
will probably need to be optimized later into the project as it probably is not
the best solution possible.

Another new part of the project is a new testing system. It is important to make
sure that certain sections are working and to have a way to test each of those
sections. For the development of this crossover algorithm, it was testing with
a simple script to output the two parents, each keyboard after every iteration,
final keyboard layout, and any final duplicate characters.

The project now has a new directory called tests where all future testing scripts

36

will reside.

Testing Script For Crossover:

import sys
sys.path.append('../src')

from keyboard import crossover

NEW_LAYOUTS = 1

Define color codes
BLUE = '\033[94m'
RED = '\033[91m'
YELLOW = '\033[93m'
ENDC = '\033[0m' # End color

Reference layouts
qwerty_layout = "qwertyuiopasdfghjkl;zxcvbnm,.'"
dvorak_layout = "',.pyfgcrlaoeuidhtns;qjkxbmwvz"

Print qwerty and dvorak layouts with colors
print("QWERTY Layout: DVORAK Layout:")
for i in range(3):

for k in range(10):
print(BLUE + qwerty_layout[i * 10 + k] + ENDC, end=" ")

print(" ", end="") # Space between layouts
for k in range(10):

print(RED + dvorak_layout[i * 10 + k] + ENDC, end=" ")
print()

Generate and print NEW_LAYOUTS new layouts with colors
new_layout = crossover(qwerty_layout, dvorak_layout) # Generate new layout

Print the new layout
for layout_number in range(NEW_LAYOUTS):

print(f"\nNew Layout {layout_number + 1}:")
for i, key in enumerate(new_layout, start=1):

if key == qwerty_layout[i-1] and key == dvorak_layout[i-1]:
print(YELLOW + key + ENDC, end=" ")

elif key == qwerty_layout[i - 1]:
print(BLUE + key + ENDC, end=" ")

elif key == dvorak_layout[i - 1]:
print(RED + key + ENDC, end=" ")

else:
print(key, end=" ")

if i % 10 == 0:

37

print()

Test for duplication
print()
print("Sorted Set: ", "".join(sorted(set(new_layout))), "\nSorted Child: ", "".join(sorted(new_layout)), sep="")
print()

The color codes are for bash output; visuallizing what keys are inhereted from
which parent keyboard

There is also the possibility to test on a large quantity of keyboards at once.

Sample Testing Output

QWERTY Layout: DVORAK Layout:
q w e r t y u i o p ' , . p y f g c r l
a s d f g h j k l ; a o e u i d h t n s
z x c v b n m , . ' ; q j k x b m w v z

New Layout 1:
' , e q t y g i r p
a s d u f h j k l ;
z x c v b n m w . o

Sorted Set: ',.;abcdefghijklmnopqrstuvwxyz
Sorted Child: ',.;abcdefghijklmnopqrstuvwxyz

38

	Research Notebook - Joshua Markle
	Table of Contents
	Title: Research Significance
	Date: 3 October 2023

	Keyboard Layouts and Alternatives
	Title: The Qwerty Layout
	Date: 5 October 2023

	Title: The Dvorak Layout
	Date: 6 October 2023

	Title: The Colemak Layout
	Date: 9 October 2023

	Title: Bash Scripting Keyboard Switch
	Date: 14 October 2023

	Physical Keyboard Features
	Title: Generic Physical Keyboards
	Date: 14 October 2023

	Title: Split Keyboards
	Date: 2 November 2023

	Title: Ortholinear Keyboards
	Date: 3 November 2023

	Title: Curved Keyboards
	Date: 12 November 2023

	Title: General Keyboard Layers
	Date: 17 November 2023

	Title: Symbol Layers
	Date: 21 November 2023

	Title: Misc Keyboard Layers
	Date: 30 November 2023

	AI Enhanced Keyboard Layouts
	Title: Genetic Algorithm Experimentation
	Date: 7 December 2023

	Genetic & Evolutionary Algorithms
	Date: 8 December 2023

	Setting Up Environment
	Date: 9 December 2023

	Parameterizing Training Data
	Date: 11 December 2023

	Quantifying A Keyboard
	Date: 2 January 2023

	Finding Datasets
	Date: 4 January 2023

	Building A Minimum Working Product
	Date: 5 January 2023

	Professionalizing The Project
	9 January 2023

	Title: Adding Key Effort Into The Calculation
	Date: 10 January 2023

	Title: Genetic Crossover Implementation
	Date: 17 January 2023

	Title: Converting The Codebase to Python
	Date: 31 January 2024

	Title: Implementing A Crossover Algorithm
	Date: 2 Febuary 2024

	Title: Creating A Crossover Algorithm
	Date: 3 Febuary 2024

	Title: Completing The Crossover Algorithm
	Date: 4 Febuary 2024

